

Encoders

magnetic Encoder, digital outputs, 2 channels, 16 - 4096 lines per revolution

For combination with DC-Micromotors

Series IEH2-4096

		- 16	- 32	- 64	- 128	- 256	- 512	- 1024	- 2048	- 4096	IEH2
Lines per revolution	N	16	32	64	128	256	512	1 024	2 048	4 096	
Frequency range, up to 1)	f	5	10	20	40	80	160	320	640	875	kHz
Signal output, square wave		2									Channels
Supply voltage	U_{DD}	4,5	5,5								V
Current consumption, typical 2)	I DD	typ. 1	5, max. 2	5							mA
Output current, max. 3)	І оит	2,5									mA
Phase shift, channel A to B 4)	Φ	90 ± 4	5					90 ± 65	90 ± 75	i	°e
Signal rise/fall time, max. (CLOAD = 50 pF)	tr/tf	0,05 /	0,05								μs
Inertia of sensor magnet	J	0,11									gcm ²
Operating temperature range		-40	+100								°C

¹⁾ Velocity (min-1) = $f(Hz) \times 60/N$

⁴⁾ At 5 000 min⁻¹

For combination with Moto Dimensional drawing A	<l1 [mm]<="" th=""><th>Dimensional drawing C</th><th><l1 [mm]<="" th=""></l1></th></l1>	Dimensional drawing C	<l1 [mm]<="" th=""></l1>
1336 CXR - 123	47,5	1727 CXR - 123	38,2
		1741 CXR - 123	52,2
Dimensional drawing B	<l1 [mm]<="" td=""><td></td><td></td></l1>		
1516 SR	18,2		
1524 SR	26,2		
1717 SR	19,4		
1724 SR	26,4		
2224 SR	26,6		
2232 SR	34,6		

Characteristics

These incremental shaft encoders in combination with the FAULHABER DC-Micromotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

The encoder is integrated in the DC-Micromotors SR-Series and extends the overall length by only 1,4 mm.

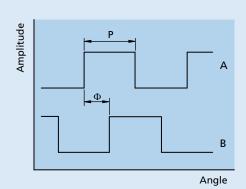
A segmented magnetic disc provides a magnetic field which is detected and further processed by an angle sensor.

The output signals of both channels consist of a square wave signal with 90° phase shift and up to 4096 impulses per motor revolution.

The encoder is available with different standard resolutions. The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

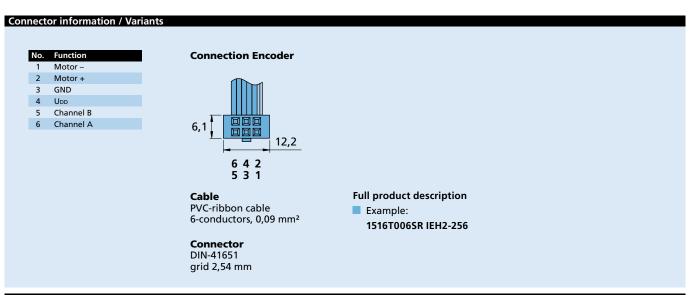
Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

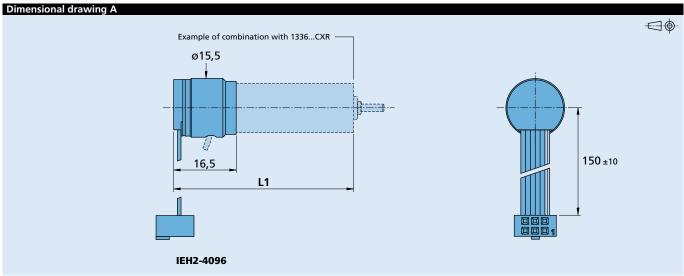
To view our large range of accessory parts, please refer to the "Accessories" chapter.

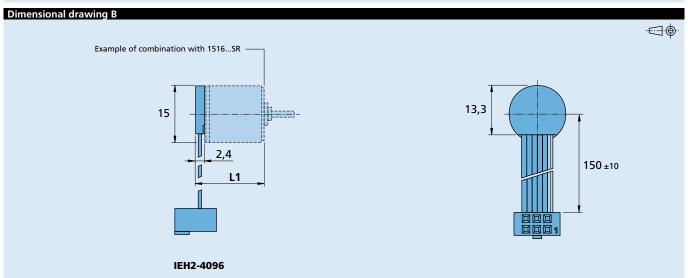

Circuit diagram / Output signals

UDD A, B

Output signals


with clockwise rotation as seen from the shaft end




²⁾ $U_{DD} = 5$ V: with unloaded outputs

³⁾ $U_{DD} = 5$ V: low logic level < 0,4 V, high logic level > 4,6 V: CMOS- and TTL compatible

